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1.0 INTRODUCTION

The question of whether or not the wave aberration function
Wi, } of an isoplanatic imaging system is uniquely raﬁtiaﬁ&bie ‘
frort the system's point gpread function (PSF) appears tdihévafbeen'
tirnt studied Ly A, Watthe:r and T, U'Ncill(l'z). Basing their

investigations on the well«known result that the so-called
dqeneralized pupil function

4
e
My

pikOW(w,f)
!“".\', & {‘l. )

- e g S SN A 2 T

(1.1)

torms a Fourier transtorm pair with the coherent spread function

" omil ax 4 8y) .

,(N.','f‘ b j d‘l (i.' F(fl, ;;) '} (1.2,
walther and 0'Neill correctly nsted that the problem of deducing
Wi ., = from the PSE

. 2
hix,y) = _(x,y! (1.3)

really atounts to that of retrieving the phase of yix,y) from
1ts modulus. The problem of determining the phase of a complex .
function from the functions' modulus is usually termed a phase -~ 7
retrieval problem and, as discusse? by Walther and O'Neill, does |
nant agencrally admit a unique solution unless auxiliary information
cf sormc sort is available regarding the complex quantity whose
phasc 18 to be determined {in this case the coherent spread
function .(x,y)). As an example of this indeterminacy, we.

{ 1. .L. o Neill and A.Walther, “"The question of phase in 1mage
- formatlon.” Opt. Acta 10, 33-40 (1963).

2. A. Walther, “The question of phase retrieval in optics,ﬂ Opt.
Acta 10, 41-49 (1963).
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that fTor any tracin: system poskesting g randtally symmotric
CHpll tanctton, the wave abetratton fanctions Wi, o) and W= b =)

yrebd sdenticst PSEYs,  thus, for suceh systems, catimates of the

unct ten based on knowledoe only of the PSF will
be indeterminate at

wave abervration !

least up te transtormations of the type diven.,

1y e,

bor the rerent et as sappoese that bessdes the 'SF we alse

ave  eeatiable the papt! fanctyon t, ) ar, what amounts o U

wame fhan e, the modat s e, ) it

the aeneratreced pupi! function,
st Tyt oand P, taam g totitier transioarm paily, the o
crobaerm 0t cdne s the phase ol MLy trom o 1ts modulus hl/z(x.y)
Covemes that o! dedacinag the phase o! o fanction (1,¢,, (x,y))

oot the savdalaa ot ke fanctien and the modulus of 1ts Fouraer

fravstorr ct.oel, Vi, i It happens that precisely thas later
prablor arrnes G oclectron :ra:mnﬁf'«_zp)“ ) where certain

woetRers Mave invest iaated thie possibility of deducinsg the phase of
a ook rtent ey i uanataed obiect from o intengity measurements

et s b e Lo the araage and rffraction plones of an electron

5)

. . {
P TTRN AN e trn conmect1on Gerchbetra oand Saxton devised

vl et ar st malteple Fast Pourler Trangsforms (FFT's) for
et riein 9 faaction from 1ts modulus and the modulug of 1ts

carier transtorm. Adthouith no one has {to our knowledge) been
hie to furnish an acceptable uniqueness theorem as to the

solationsg obtawned by the Gerchberg-Saxton algoritam, we

L. ol . Miacell, “An examination of i1terative method foir the
s+lutien ¢ the phase problem in optics and electron optics,”
S. Phys. D6, 2220-2225 (1973).

. ALt Drenth ot al.,The proklem of phase retrievel in light and
cloctron microscopy of strong optics, "Opt. Acta 22, 815-628
119791 .

v, R.W. OGerchberg and W.0.Saxton, "Phase determination from image
and d1ffraction plane pictures in the electron microscope,”
optik. 34, 275-283 {1971). R.W.Gerchberg and W.0Q. Saxton,

"M practical algorithm for the determination of phase from
irage and diffraction plane pictures,”™ Optik.35,237-246(1972)

2




simulation gstudies that the alaorithm can

At others have Tou
e expected 1o vield o ounigue phase reconstruction so long as the
modalt of the function and its Pourier cranstform ave adquately

samprioad,

The Gerchborg-Saxton atgorithsm is oot the only computation
technigue avatlable {or deducing the phase of a complex function
trom 11 modulus and the modulus of 1ts Fouriler trapnsform.  An
Aalrervative schem» has alsce been propogsed by Gerchberg and Saxton

6) . .
( Tapecifically tailored

whilo Consolives providoed an alagorithe
too the problem o doeducine the aberrations of a lens from the
lens! pupil function and point spread function,

The probles of Gedacing a lens' wave aberration function
Trom its point spread Tunction s intaimately connected to the
probiem of ostimatine wavefront distortions of adaptive optical
iwmaging systome from imacery of a star obihect.  In this later
application, the image of the star obiect 1s detected by a square
array ¢f phatoadiodes o vield an estimate of the P8¥,  ‘The PSF
ostiwate s then inpot 1o a drailtal processor preorammed with

the phase votrievai aluovrinum,  The sutput from the processor is
an eantimate Q(:,G¥ of the wave aberration function W(,,z) which

1s then used to determine the appropriate control siagnals required

to drave the adaptive 1maging systom to a state havang a more

6. R,A. Gonsalves, "Phase retrieval from modulus data,"” J.0pt.
See Am,. 66, 961-964(1976) .,

gk
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favorable aberration runction. This procedure is illustrated

graphically in Figure 1.1,

- TCold Sheed
P etector s // * eld

Estimation and
, Subscequent
¥ [ 4 AY T} *
{I—* Wiave Aberratione- .(\lbgmm nt of
¢S
™ Function pries
,/ \\\ )
I ot -,
N ENit /
] Puml /’
\\\ Wine Aberration ‘l ,."'/
TR LSt o b -
\3. et ]

Froure Lol Graphie illustration of rhe tUise of a Phase Retrieval

soorichs in an Adaptive Imaaging S8y Lem.

.

The phase retrieval algorvithms discussed above can also be

applied in gituations where the system PSF is nes directly

observable but c¢an, neveriheless, be estimat & _om imagery pro-
duced by the system. For example, if we rer . 't our attention to
a sinule 1soplanatic pateh the image inten...  vprofile Ti(x,y) and

obiect intensity profile O(x,y) are rei i vi. the equation

i(x,y) -'-'ﬁ:.!;:‘ ay? oixt 'Yy« Yy = y') . (1.4)

where hix,y) is the sytem PSF corresponding to the particular
isoplonatic pateh in question., if the olject profile 0(x,y) is
known the Equation (1.4} can be inverted (eg., by use of Fourier
transforms) to yield the PSF h(.) which can be directly input to a
phase retrieval alaorithm, A block diagram illustrating the

procedure is presented in Figure 1.2.
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L e T

O - ] ey | CEretevtion Ierse
W . Chnaes s\siem Filter
v haty
T
n

Phuse Resrieval
\uzorithia

PFigure 1.2 Block diagram ot control loop of an adaptive imaging
system using an "inverse filter” to cstimate the PSF from
maagery of a known object. The ostimated PSP is input to a

phase retrieval algorithm for determination of the system
aberrations for subseguent control of the optics.

In cases where the scene being imaged 1s either completely
or partially unknown one c¢an still employ thc aberration
estimation algorithm discussed above in conijunction with tech-
nigques which adaptively estimate the scene being imaged. The
overall process may, however, require long execution times and,
thus, may not even converqe in cases where the image motion is
pronounced. For this rcason FIKONIX has developed an algorithm
which allows one to estimate an optical system's aberration

function from two images of an unknown scene recorded at different

3
i
H
H
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systoem defooy values. Heneo, by che use of dual imaae planes
such as shown in Plrguvre o3 in conitunction waith the

aforementioned algerithm, 10 18 possiblio to assess the wave
aberration functron of the vmaaing systoen, Ptoan important to
stress that no o priorit i ormation regarding the scheme being
taaded noed be known and ne dithering of olements within the

4

adantive oprtical system 18 requived to dodues the waveivont

Gistortionz, Jdust o oas was the case when the scene being imaned

1y Enows, the ohtire process seasuarernent -wave aberration

estimation-correction 'z completely geconplished in open loop
fashion using only tho imagery recorded over the two imaae planos

shown s

boeas splittor

imege plane #1
* {({°CHh aviay)

; pvocre piane #2
A (WU array)

ctoawteh adaptive ceoondary {e.qg.,

image planes (_( n.\m"i Ve of Charge
located at different distances from

Fiagre tmaio lmo 2] is located at

2 s (l(?!(}(flih(-_‘d by the {(known)

sament canstitutes the Final Report on Contract

~ae

G6Q2-77-U=0176 titled nalytical Studics of Phase Estimation
Toechniques.”  The ohhective of this program was to evaluate the
application o the optical gystom wavefront aberration estimation
technicgaes discussed aboeve to sulti-clernent wide field of view

optical confirnrations. To this end it was necessary (o:
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{1 perform an analvuical iavestigation intoe the theory of vave

aberration estimaticon: (2) develop wave aberration estimation

.
(R

dloorithms to be used in computer simalation studies and, (3) to
veriorm computer simulations against known and unknown scenes in
the presence of varying amounts of noise and wavefront error.

The estimation technigques under investigation can be

classified as shown 1 Dilagraml.l. In this diagram "G,.8. phase
rotrioval alaorithm” stands for the "Cerchberg-Saxton" algorithm
- - which usces the multiple Fourier transform technique desceribed in

the Fropoce=?! oy thia captract and shown s«chematically in

I T 1

) B
o2, hase
retrieval
Ynown Dolta cluorithm followed
T C vk by control of
) adaprive

ER A N B X
SR N

Phase reotricval
usine

1 s - Py : "

Fnown arbitiarny Devancs ("(msa lves '.'

. Dby ettt algorithm £
e followed by N
- control of B

adaptive optics

- i i'nknown
) e )
PDiaaram 1.Y Alternative System Philosophies
7
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Gevrchborg=-saxton (G
upi

in the operation of the
v estimating the phasce of
1

the genceraltized p g rom 1ts modulus 8. . )
, Py ) Pk
and the modulug Jhix , v, ) of dts Fourier transform N
H H # it

Tho rosuits froep the analytaical investigation phase of the
program are revovrted in Chaprer 2. This phase of the effort in=-
cluded 1nvestigations into the orfects of polychromatic
radiation, detector noisce, imayge motion, imace aliasing,
aberration magnitude and spatial froquency content of scenes on
the vrocess of phase retrieval, The results of this investigation
indicate that:

1. 7The spectral radiation bands anticipated in the

HALO mission do not pose a preblem {or the phase
retrieval aloorithms,

The NEFD's of CCD arvays anticipated for use in the
HALQO mission are such that electronic detector noise
will not seoriously degrade the performance of the
phase retrieval algorithms,

=~
.




3. laage aliasing will scerviously degrade the
poerformanee of the atgorithms but can be overcone

by use of a muitiplex sawpling scheme discussed
in Chapter 2.

1. The performance of vho phase retricval algorithms
is optimum for wmoderate amounts of aberration. The
verformance for vwory weak and very strong amounts of
aberration depends on tha signal to noise ratio
and on the spatial trogquencey content of the seenes
belnag tmaged,

wn

. The effects of scone spatial frequency content and

ize an the phage estimation
algorithms depend on the amount of aborration
stmualation studies,

Tinijte dotoctor g

A lavae part of the work perforacd tn the program was, of
course, doevoted (o actually senerating new software to imploment
N teochnigues,  Software

tho varitous abxriation ostimatic

N
generated Jduring the course of the proaram includosg:

1. SO T D onovate tywo-damonsional 25 's.,
2. to perform the twe-dimensional
SHaxton atloorithn,

L.oA pragdrvamn fo periorm the Revaney-gonsalves alyorithm
PHERE AN ST 1 y data from the one image plane.

1. A Droagram o perform the Rovanev-consalves alqgorithm
on twe-dimensional data froi the two image plane.

5. Toprodaram Lo generate polvebromatice one-s

Thoe Tast task n tace Statement oY Work (Task 4,.2.3) calls
for computery testaine o the varioas sberration estimation
software packaaey dovoloped in the program.  ‘The results from
reprosentative simulaticons are presented in Chapters 3, 4, and 5.

The results from the simulation studies using the Gerchberg
faxton {(G.8.) aluovithin are presented in Chapter 3. This
alcorith, did not perform well in the simulations. In particular,

the results of the simuiations indicate that the algorithm is not
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“robust" in two dimensions (i.e., its performance is highly
dependent on the choice of a starting estimate). Because of this

it was decided to proceed directly to the two dimensional

Devancy~CGons&ilves algorithm carly in the course of the program,

The rosults from testing of the tweo-dimensional Devaney=
Gensalves algorithms are presented in Chapter 4. We say
alyorithmg because, as rveguived by Task 4.1.6 of the Statement
of Work, a number of algorithas were developed and tested
corresponding to diffevent models of the wave aberration function;
the principle conclusion to be drawn from the simuiation studies
presented in Chaptar 4 is that these algorithms work extremely

well and are very robust so long as therce is no limjit to the

amount of computation time allowed. Sometimes cxtremely long
oxecution times are required by the algorithms.  The reasons [or
this are discussed in detatl in Appendix A, along with a state-
ment of the algorithm and & more complete presentation of the

resuelta of Chapter 4,

Chaptor % presents results of the two image plane simula-
tions. One particular wavefront aberration ts usced, with varying
noise levels, detector sizes, and object spectra. Results show
that the algorithe will yiold good estimates cven in the presence
of large amounts of noise, large detectors, and large objects.
However, the same problem of long execution times is present as
in the one image case, Appendix B presents a proprietary version

of Chapter 5,

10




4
H

.-

e e

<

o g

RISt e LT (TN b e nsas

2.0 ANALYSIS

201 BUMMARY

In this Chapter we roview the work performed on the tasks
contained with the "Analysis" pavagraph (4.1) of the "Statcement
of Work" for the Contract, 1n Section 2,2 we discuss the effect
ot undersampling of an imogye of a star object,  For this case it
13 shown that the phase retricval is not unique. In Section
2.3 we show that the phase retrieval will also not be unique
19 the aberrations are such that the Optical Transfer Funhction
(OTF) is well approximated by the so=-called "Geometrical Optics”
O, dection 2.4 discusses a possible technique for achieving
Nyquist rate sanmpling by means of a sampling multiplex procedure.
The offoct of finite detoctor size and of scene spatial frequency
content arce discussed itn Scotion 2.5 where a theorem is
estabiished which shows that these two factors have precisely the
same  effoect on phaso vetrievals Pinally, Section 2.€¢ addresses
the question of the effect of nen-monochromatic light on phase
retrival.

2.2 THE EFPECT OF ALTASING ON PUHASE RETRIVVAL

PP

For the case of a stay object the phase rvetricval probiem

reduces to that of determining the phase of the coherent spread

function,
1

0

-iaN
e

Gix) = da Fla) (2.1)

‘uo

from its modulus'g(x)' and the modulus of its Fourier transform
F(ay, in the above equation a= %% u is a "reduced coordinate,"
with f beina the focal length of the imaging system, A the
wavelength of the light field and u the position coordinate over
the exit pupil. The argument of ¢ (x) denotes position along

the image plane. For simplicity of presentation we have restricted

1

el 4Ly




outr attention to the one-dimensianal ¢ase. The results
cstablished below hold egually well in the case of two

dimension, however.,

We hote that since the integral in Equation (2.1) extends

only over the finite inteorval [-0 .00] w may expand the

J
ceneralized Pupil Function Fla) in a Feourier series with
period ZNGW.

RS

. . . 1 :,T—\E a ASES
F(a) ‘23 CyE o (2.2)

Ve

whore N o1s any integer 2 unity.  When Equation (2.2) is submitted

into Yaguation (2.1) one ¢obtains

. ad
- )3 ‘\’ - - \)“
Ny < L (‘V da ¢ (M‘O
veo o (2.3)

Bowover, from pyuation (2.2) we conclude that
Yo . "
; HRE Y .
“ = (e B e § F -
Sv 2Wa da i) e 0 2Na X Nag v
~Il0
(2.4)

whore we have used Equation (2.1). Finally, upon substituting
from Eqguation (2.4) into kKquation (2.3) we obtain the sampling

series representation of wix):

- L e
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= 1
B . R H T
wix) = g Yo
V= a

above its Nygnist Rate

l\'(:\')‘;t = :‘ E | =
\F= -

cquivaleontdy T IxFE7Y s tu.ce
can boe ahown to be aue o the
WMOJAUNIUS Ol o TURCtIOn s twice
artaicular, the saxitaum samplo

sampling o Fix) s

N - T )
TN O R
; ‘o

3 A " .\

] = g = .
.- R <
%

t,-"(x: L v) sing %(" 0 (X‘ i \') ‘ (2.5)

Na

It is important te note that for the sampling series (2,95)
to hold the quantity N aust be a positive integer greater than
or 2qual to unity. It ¥ = 1, the complex tunction ¥(x) 1s said
to be sampled at _its Nyguist Rate while for N>l 1t 1s sampled

{oversanpled),.  Now the modulus square
|¢|2 of ¢ix} also adwits a =arpling serles ropresentation.  1In

particular, it is rot difticult to show that

where M ois al8o a posiuive inteae? arcater or vqual Lo unity.

]
- . . ' . 4 . M . “e = . -
Agarn, 1t M o= . |-_-,|x.-! rosatd to be osampled at o 1td Nyquist
tate while 18 M ™Y 1t s savd o be oversanpled.
We ntote that the Hyguist rats ter the medalus of @ {or,
y

the Nyauist rate for ¢ (This

tacst ‘hat the bandwidth of tho

Chat of the function 1tsclf.) In

SpacIng allowed for adeguata

*.m7

whille the maximum sample spacing allowed for sampling of the

modulus of  IN) (o, cauvalently, of [ {x) 7)) is

S . {2.8)

)i e
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We shall now show that if the modulus of ¢ is sampled at or
below the Nyquist rate for ¢ (i.e., if Aiwli Aw). then the
retrieval of the phase of ¢ from its modulus and the modulus
JE(a)} of its Fourier transform will not be unique if the

_ : pupil function is a constant.

Theorem 1 =
Let the pupil function f(a) =|F(a)| = £, be constant. R
Further, let W(a) be a continuous but otherwise arbitrary tE
wave aberration function defined over the exit pupil =ug < :
-3 < ag and let i be a real numbor in this same interval. Then ;
any aberration function of the form LS
Wla-u + (\0) it ~ag ¢ Oy ?7
W, (@) = (2.9) {
wWia=-u -(le) if“f(\faa ) %
will generate a coherent spread funntiong“}x) having the same i
modulus ¥ (x}! at the sample points x = n A i o= 0, 21, 22,0, 3
Proof of Theorem 1 ¥
From Equation (2.1) we have that
R Q 2%
0 iy 0 lc-'--w‘_‘.t]) s
vo(x) = [c‘a Fla) e “%a t'(f doe ¥ "X (2.10) }
1 r
__“,00 .ﬂo

14
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On substituting from Bquation (2.9), we ohbtain

" L2
. 1= Wy = y¢ \'go)
. ~fax
[1EY o A 2]
"U {x) fo da © C
-Qt
0 i 2 Wi )
o M a
0‘, A Y wjliy
+ f da e ¢
0 '
i
which simplifies to bocome
.2
) i ?_ Win ')
-} . -taaty
v x) = g0 Hu-a,)x &' e g 1N
._‘g
- 11;—- Wia')
-l i > - ]
LI AN o] l(\'MO)"‘I da' © o"ta X
0
o
1{ we put
X = n '3 e
N Y ()
thon agh = one and Equation (2.12)aives
[} ]
0 i $wia')  -iat

= @ g (X =na ),
Vv
which estabiishes the theorem,
15

(2,.11)

. (2.12) t
(2.1
(nA )
v,‘
(2.14)

(2.14)




The above Theorem shows that it is extremely important to

sample at the Nyquist rate appropriate for the intensity

of the image in order to obtain a unique determination of the
- : wave aberration function. As we shall show in the following
= : secticn nonuniqueness of the phase retrieval problem is also
i ' encountered when the aberrations of the system are so severe
that geometrical optics gives a complete dascription of the
image forming propertics of the system,

2.3 THE EFFECT OF LARGE ABERRATIONS OF PHASE RETRIEVAL

The distinguishing characteristic of a highly aberrated
imaging system is the relative unimportance of diffractior and
interference effects in determining its image forming properties,

B In particular, it is common practice to < aracterize such systems
by the Bo-cailed "Geometrical Cptics Optical Transfer Function®
rather than the exact (within the limits of scalar diffraction

theory) transfer function given by

PRy T NN T SR T

OTF(FX,FY) =ffdu dv f(u,v) f(u+2AF¢ P‘x, V42A\F$ Fy) L

] (2.15)

T AN sk i et

i ?-’![w(u,v) - W(U+2MF_, V42AF4 F_)
o A X y

L where F# is the F number of the imaging system. The Geometrical
; Optics Transfer Function is obtained from the exact expression

: given in Equation (2.,15) by taking the Geometrical Optics limit 3
i A+ 0, The details of performing the required limiting

operation are quite straightforward, (cf., K. Miyamoto, "Wave
Optics and Geometrical Optics in Optical Design®, in Progress
in Optics, ed., E. Wolf (North Holland, Amsterdam, 1966), Vol. I,

?, p.43), and one obtains

OTFG.O.(FX‘ Fy) = ll.du dv e

16

. AIW(u,v) aw(QJVﬂ
14wFO[rx 3 a *Fy 3V

(2.16)




In Equation (2.16) A represents the area of the unit circle

and OTF. o is the Geometrical Optics OTF.

In the following analysis we employ the Geometric Optics
Transfer Function given in Equation (2.16). It is found that
this-quantity by itself does not uniquely determing the slopes
{dW/3u, IW/Av) of the wave aberration function. In other words,
within the framework set by Geometrical Optics, wavefront
estimation via the use of phase retrieval techniques is not

\_‘il..i.fl‘m .

It is extremely important to note that this nonuniqueness
holds only in the geometric optics limit when diffraction and

interference effects can be completely ignored. These effects

will be present no matrer how large the aberrations and it is,
evidently, precisely these effects that are responsible for the
success (and apparent uniqueness) of phase retrieval techniques
in the casce of small and moderate amounts of abervration. If

the measurement process used to deduce the OTF were perfect,
then the effects of diffraction and interference on the OTF would
be observable and, hence, the process of phase retrieval wonld
{presurmably) be unique. However, when the aberrations are large
and measurement noise is present, these effects can becone
“lost” in the noise with the result that the Geometrical Optics
Transfer Function fits the noisy data quite well and phase

retrieval will not be unique.

The severity of the aberrations and the amount of measure-
ment noise required to cause phase retrieval techniques to fail
is not known at present and can probably not be determined in
advance even for the simplest optical configurations. However,
preliminary one-dimensional computer simulations indicate that
dif fraction effects play an important role even for cases of
very severe (in excess of ten waves of aberration) wavefront

errors.
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fFinally, it should oe noted that although the results
presented below estaklish the fact that the wave aberration
function cannot be uniquely deduced from the Gecmetrical
Optics Transfer Function alone it is quite conceivable that
certain types of auxiliary information concernin. “he aberration
" function might lead to a unique specification of this guantity.
In particular, it appears likely that the phase retrieval will
yield a unigque solution if one knowe in advance that the wave
aberration function admits a finite order polynomial
representatidn; €.9., an expansion into the classical wave

aberration polynomials,

Proof of Nonunigueness in the Geometric Optics Limit

For simplicity, let us consider first the one-dimensional

case where OTF reduces to

G-Oo
1 i ng(u)
O'I'FG o (l-‘x) =f du e ' (2.17)
-1
with
= - gW(u)
gu} = 47 P4 Tu

We now establish the following Theorem.

Theorem 11

If g{u) is a bounded solution to the integral equation
(2.17) then so too is the real valued bounded function d(u)
which satisfies the infinite set of conditions

1
/du gn(u) '], dud® (Ww; n=1, 2, 3,... . (2.18)
-1 -1
but is otherwise arbitrary.

b RN
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Proof of Theorem 11

: Since the integral in Equation (2.17) extends over a finite .
interval and the Taylor series expansion of exp(i Fo g (u)] 5

is uniformly convergent within this interval (due to the
agssumed boundedness of g(u)) we may write

B (i Fx)n 1 ‘gi
OTFg.0.(Fx) =2, = du " (u) (2.19) E

- n=0 -1 ?ﬁ
] B
i

2

I'€ the bounded function d(u) satisfies the infinite set of
conditions given in Equation {(2.18), then we can replace each
integral on the r.h.s. of Equation (2.19) with the r.h.s.

of Eguation (2.15) and thus obtein

oy

s
T3 Al

R

oG [ Ly o x4t
OTF o (¥ ) = —f— f du a" (u) =] ue ' .
n=0 -1 -1 3
(2.20) !
g
where the last equality results from the assumed boundedness of B
d(u) and, hence, the uniform convergence of the sum. This j
proves the theorem, ég
Theorem 11 implies that tha quantity g(u) and, hence, %
the derivative of the wave aberration function aW(u)/3u (i.e., :

the wavefront slope) cannot be uniquely deduced from the

Geometric Optics Transfer Function. In particular, it is easily 1
verified that the infinite set of conditions given in ,ﬁ

Equation (2.18) hold if segments of the g(u) function are inter-
E changed. Even if one imposes the further condition that the

function d(u) be continuous, it is still not difficult to

construct a function which satisfies these conditions.

Figure 2.1 iliustrates one methcd of generating an equivalent

19
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function d(u); the level do can be shifted at will, showing
that there are ar infinite numier of such functions which
yield the same transfer function. .rom the method of
construction, these equivalent functions may not have

continuous fisst derivatives.

% ’/-’—"\_—____/’
gw | d /\ %

=
\12\
)
-
=<

e

[ ] [ ]

to

: !

' ]

' ¢

e 2

U" [}
- l-~.1l —
'

e

d)

u

Fiqure 2.1 Two Functions Yielding the Same
Geometric Optics Transfer ['unction
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An equivalent function possessing all the quantities of the
original function g(u) consists of the "mirror image" of the
original tfunction. That is, the function S(u) = g(=-u) as
showa in Figure 2.2., will have the same transfer function. This
can be proved by direct substitution:

g (u)

prsernsrncnnnnere

- Pocceccece

+
[
4

Sfay - g {-ul

bt Proerencecceas

Engatio ol oyes
'
+
-

1
il .
i U

Figure 2.2 Mirror Image Functions ';ﬁ
Possessing Identical Transfer Functions ;

BT R R sty e

In a practical situation, the wave aberration function and
hence its slope g(u) is a sampled, discrete proccss. We see
that if there are N independent samples, we may arrange them in
any order, thus gencratinqg N: different functions which

correspond to the same transfer function. There may be several
sets of samples which assume thc same quantized values; thus
the number of distinguishable displacement functions is
accordingly decreased, but this is not important to this i
discussion. The important point to note is the lack of y
uniqueness in determining an aberration function from a

adeafnnd R SREN L i [T
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Geometrical Optics Transfer Function.

An entirely parallel discussion as that presented above
implies for the two-dimensional case. 1In particular, we have

the following theorem;

Theorem III

Let 3W(u,v)/92u and dW(u,v)/ 3 v be the first partial
- derivatives of a wave aberration function which yields the
Geometric Optics Transfer Function.

- W,V IW(u,v)
14ﬂF'[?-36L— +Fy-_§;4_.]
OFTG.O.(Fx'Fy) = du dv e
A
(2.21)

Further, let 3W/du and 2W/2v be everywhere bounded within the
pupil area A. Then therc exists at least one other wave
aberration function W(u,v) which also has bounded first partial
derivatives 3W/3u, W/3v and which yields the same Geometric

Optics Transfer Function as does W(u,v).

We omit a proof of Theorem IXI since it follows directly
from the discussion presented above for the one-dimensional case.

2.4 A PROCEDURE FOR INCREASING THFE EFFECTIVE SAMPLING RATE OF
AN ARRAY OF DETECTORS

As shown in Section 2.1 the phase retrieval problem does
not admit a unique solution if the PSF is sampled below the
Nyquist rate of (2/AF#) samples per unit length. Throughout this
document it is assumed that this sampling requirement is met,
However, it is anticipated that the actual detectors to be used
in the HALO mission will be too large to meet this rather

22
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stringent sampling requirement and, thus, it was necessary to
explore alternative procedures for achieving the required
sampling rates.

The procedure described in this section uses a relative
image motion between the detector array and the image from
which the aberration estimation is being performed to obtain
a higher sampling rate than would normally be achievable with
the detector array. Since the effect of the finite areas of
the detector surfaces simply modifies the spatial frequency
spectrum of the object being imaged (see Theorem IV in
Section 2.4) we shall, in the following discussion, limit our
attention to an array of point detectors. The results obtained
hold equally well for the case of detectors having finite areas.

The proposed technique is most easily introduced in a
one-dimensional context. 1In Figure 2,3 is shown a one-
dimensional PSF which is sampled by the linear array of point
detectors having a sample spacing of A . 1t is assumed that the
PSF moves across the detector array with a uniform velocity V
and that it does not change shape over the time interval a/N.
At time tl v
labeled by the number one in the Figure (The detectors are

the detectors will measure the values of the PSF

assumed to be "turned on" only in a very short time interval
centered at tl). At time ty=t, ¢+ d/v=t1+ A/2v the detectors
will measure the values of the PSF labeled by the number two in
Figurc 2.3. Because the time increment between the reading

at t, and t, was selected to be (4 /2v) the above process i8
secen to yield equally spaced samples of the PSF with the
sampleg being A /2 units apart. It is clear that by choosing
smaller values of the time increment even higher sampling rates
can result.

!
&:; .




PSFat t
1 1

- d/v

mealte

S o Array Axis

Point Detectors

Figure 2.3 7Two sets of sarples of a PSF obtaine? at the two
times t and t, = t, + d/v. N relative linear velocity of V

is assumed to exist between the PSF and the detector array.
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An entirely analogous situation as that described above
results in the two-dimensional case. In two dimensionsa, however,
it is impertant that the motion of the PSF at an angle
relative to one of the detector axes. This condition is necessary
in order to achieve a high sampling rate in two orthogonal

directions.
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In Fiqure 2.4 is shown an array of point detectors (large
} dots) having a sample spacing of A, Assume that a PSF were
= : to sweep across this array at a velocity of V and at an
angle at 45° with respect to the array's horizontal axis. If
the detector array were to make two successive instantaneous
measurements separated by a time interval of (A/v2 V) seconds
apart then the two sets of measurement together would yield
samples of the PSF at all sample noints shown in the Figure,
{The large dots would be the sample positions at one time and
the smaller dots the sample positions at the other time.) The
overall process would thus be equivalent to sampling the
stationary PSF by a regular square array of point detectors
having the geometry shown in the box in Figure 2.4.

dircction of motion

-0
0,707 43

Iigure 2.4 Samples of a PSP moving at a uniform velocity
at 459 relative to the horizontal axis of an array of
point. detectors (large dots).
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: be achieved if the angle 0 between the array axis and the

direction of motion of the PSF is smaller than 450.

A higher sampling rate than that shown in Fiqgure 2.4 can

However,

it is easily shown that in order to obtain an equally spaced

satisfy the equation

Tan 0= 1l/n; n=1, 2, 3, . .+ &

= A plot of the allowable values of ¢versus n is shown in

Figure 2.5,

SOW
g 10+
] ¥y
®
- 3
g v 20
1
1 N 3 ] D 6 N

Figure 2.5 Values of ¢ Satisfying
Fauation (2,22)
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square matrix of samples this angle can only assume values which

(2.22)
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The condition (Eq. 2.22) results from the requirement
that the relative motion between the detector array and the
PSF be such that at the beginning of a new sampling sequence
the relative position of the PSF and the detector array be the
gsame as it was at the initiation of the previous sampling
sequence.  In the case shown in Figure 2.4 the sampling sequence
consisted of two sets of measurements. At the initiation of
: the seguence the measurement points are indicated-by the large

dots while at the second sampling time the measurement points
. would be the small dots., Since the direction of motion is
- 452 the next sampling time (assuming samples to be taken
; (a,¢”§3) secconds apart) would occur again at the locations of
H the large dots and, thus, the whole process would be repeated.

g

iy

In Figure 2.6 is shown the case of n = 2 or &:26.560. The
sampling secquence consists of five equally spaced measurements
oceurring (1A¢”§m A/v) second apart. (In general, the number
of measurements in a sampling sequence is n2 + 1 and the time
between samples is thus ((1/yn° + 1) a/v seconds). At the
sixth measurement time the relative position between the sampling
array and the PSEF is the same as at the initiation of the sampling
sequence sc¢ the whole process repeats after every five measure-

ments.,
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4
Fioeure M6 a0 VHT meving ot a aniform veloaoaty
at 26,55 rel o the hopjzontal axis o! an array ol

poine detoctors (datae dotsd,

Prom the analysis presented above it 8 concluded that
guitable sapling ratea ¢an be achieved 1t relative imade
mat o exi1sts boetween the imgage field and the detocting array.
This motlon ®ust be at an angle rejative te the arvay axis and
the angle must satisfy Fquation (2.22) for the resulting

gampling matrix to be square and vegular,

*

S THYE BFFECTE OF PINTTE DETECTOR G128 AND SCENE SPATIAL
PRUQUENCY CONTENT ON PHASE RETRIEVAL .
[

. . . t
One of the maror problems encountered with sampled data
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imaging systems is aliasing introduced by undersampling in the

image plane. 1In addition, the finite sizce of each element of

an array of detectors hag the effect of decreasing the object

- spectrum at high spatial frequencies and, thus, leads to small
8ignal to noise ratios at high spatial frequencies. Both of
these effects have an impact on the process of aberration
function estimation., In the Iollbwing discussion we prescnt

the analysis which relates the ovtput of a two=dimensional

array of detectors to the image being detected and in the process
cstablish the result that scene spatial frequency content and
finite detector size have precisely the same impact on phase

N

retrieval.

By
X

1-r

=X
B
Py

wWe shall assume that the imnge 1{x,y) of an object O(x,y) B
is sampled by a regular array of identical detectors such as ¢
shown in Figure 2.7, TIn this Figure y
3
13
¢, = on/2e
hn : Q ' ]
(2.23)
’ = m/2f
Yo To !
where l/?fQ is the center to center separation of the detectors :
and n and m are integers,
veaecergerersesgnrneans PPN aesenee
..L.._._-_.-._.A-oi.o‘;oe*
- 102 '0 : % """"
S
- : . ) 'n -
§ ........‘:q'...-...‘-.....‘.........;---
12t
= (
: , ]
- Figure 2.7 Sampling Array Gecometry 4
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In the absence of noise the response of each detector will be

assumed to be given by

. _ , ‘. LI

1n'm -jfdx'dy' I(x', y') D(x L | yn) (2.24)
where D(x',y') = O if | x"{or |y'[>1/4f_ .
By substituting the Fourivcr inteqral representation

L} +K []
[} [} - 1 Py : i[x)} Yy]
I(x’,y*) = - ] dedKy I (Kx,Ky) e (2.25)

into Equation (2.243) we find that in m becomes

’

l.n"m —(-‘2-;";'2‘[’[(3)\}( dl\y 1 (l\x,Ky) D(KK'KY) e

where

-i[kxx' + Kyy']
‘t‘)’(kx.x )a]fdx'dy‘ Dix', vy'} e (2.27)

Y

and

-4 [] . )
) i [Kxx + KY)J
I(Kx.ky) =fldx'dy’ 1ix',y')e

= O(Kx, Ky) oTF (Kx, Ky) '

(2.28)

with 0 (Kx,xy) being the spatial frequency spectrum of the
object being imaged and OTF (Kx, Ky) the Optical Transfer
Function of the imaging system. Finally, on substituting
Equation (2.28) into Equation (2.2%) we find that
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l.m —]f dede O(Kx' KY) OT¥ (Kx. Ky) e
- o0 .

g (2.29)

where

SK . K ) = DK, k) O (K, k) | (2.30)
We conclude from Equation (2.29) that the effects of finite

detector size as manifested inthe detector frequency response

fpnction Bka, Ky) and objecct spatial frequency content

O(Kx' KY) have entirely equivalent effects on the output in,m

from an element of the detector array. This "equivalence

property” allows us to conceptually replace an_actual detector

array by an_array of point detectors so _long as we also

replace the actual objoect spect rim 6(Kx, Ry) by the modified

spectrum ﬁlkx, Ky) as defined in EQuation (2.30). This
cquivalence is stated precisely in the following Theorem:

Theorem IV

Let the image of an object having a spatial frequency
spectrum G(Kx, Ky! be sampled by a rcgular array of identical
detectors having a center toxcenter separation of 1/22?Q and
frequency response function D(Kx. Ky). Then the output from this
detector array is precisely the same as would be obtained from
detecting the image »f an object havina the spatial frequency
spectrum‘B(Kx, Ky) = G(Kx, Ky)‘B(Kx, Ky) by a regular array of
point dectectors having the same center to center separation

{i.o., 1./2f0 ).

3i
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Proof of Theorem

The proof of the Theorem follows at once from Equations
(2.29) and (2.30).

- Comments

The above result is extremely important in that it allows
us to always deal with an array of point detectors without any
loss of generality. Because of this, for example, the analysis
presented in the preceeding section is directly applicable to
arrays of non-point detectors. In addition, it shows that the
problem of phase retrieval from a star object using a regular
array of non-point detectors is precisely the same as the
problem of phase retrieval from non-~point objects using an
array of point detectors. This later equivalence turns out to
be extremely important in the simulation studies presented in
Chapter 1.

2.6 THE EFFECT OF NON-MONOCHROMATIC RADIATION ON THE POINT
SPREAD FUNCTION

In order to determine the effect of poiychromatic radiation
on the process of phase retrieval, a number of (one-dimensional)
multi-gpectral PSF's and OTF's were generated, having various
amounts of coma and defocus. The input spectra for these PSF's

and OTF's contained three to five wavelengths and had a total
width of 10% to 20% of the central wavelenth. The results
indicate that the introduction of many spectral components
affects the detailed structure of the PSF but not its general
shape. Another way of putting this is that the OTF is affected
mainly at the higher spatial frequencies.




Method of Calculation

Let P{x, ) be the point sprcad function at wavelength j at
point x. Then the multi-spectral PSF is given by

P(x) = X, q Plx, x)/):\ c, (2.31)

where the quantities g\ represent the relative weights of the
different wavelengths, For each wavelength P(x,, ) is given by

- i O X 2n i 2
291 2’\?‘6 —_l Wia)
da f@)e

P(x,\) = (2.32)
where F# = the F number of the system
@ = the aperture coordinate/the aperture radius
f(a) = the pupil function of the system
W(a) = the total phase shift due to the wave aberration
i function W(a) at wavelenqth A

It is important to note that it is tactily assumed in this
analysis that the wave aberration function W(a) is independent
of wavelength. Such an assumption is valid for optical
imaging systems employing high quality mirrors such as is

envisioned for HALQ.

The plots presented in Figure 2.8 thrcugh 2.16 show the
total phase shift at the central wavelength; i.e.,

wEe) o n
WE) Zn A am, (2.33)

the multi-spectral (polychromatic) PSF, aad the modulus and
phase of the polychromatic OTF for various choices of the
expansion coefficients (aberrations) An and for various
wavelength spectra. Figures 2.8 - 2.10 show line spread
functions and OTF's calculated for an aberration of one wave of
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defocus, The first figure shows the monochromatic case,
while the next two figures show the case of three wavelengths
with a total apread of +10%, and five wavelengths with a total
spread of +20%. Figures 2,11 - 2,13 and Figures 2.14 «2.16
show a similar serics for one wave of coma, and for one wave
of coma plusa dne wavo of defocus.

[

As mentioned above, these results indicate that the
polychromatic and monochromatic OTF's are quite simiiar,
differing mainly at high spatvial frequencies, In this sense the
effect of polychromatic radiation on the process of wave
aberration estimation is quite similar to the effect of detector
noise on this process. Because the phase retriceval algorithms
appear to be highly insensitive to moderate amounts o€ detecctor
noise, it is reasonable to conclude that they will likewise be
ingensitive to the eoffect of moderate amounts of spectral
broadening in the detected radiation. This hypothesis can,

of course, be tested in corputer simuiations although it was

s

decided that such simulations were not warranted within the

current effore.
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3.0 THE GERCHBERG-SAXTON ALGORITHM

The Gerchberg~Saxton (G.S.) algorithm is a method which
permits determination of wavefront aberrations from measured
point spread functions by the use of repeated Fourier transforms.
The overall operation of the algorithm is shown in Figure 1.4
of Chapter 1 and in more detail in Figure 3.1 below. It basically
consists of going back and forth between the generalized pupil
function and the coherent spread function by means of Fourier
transforms, each time keeping the phase part of the function and
replacing the magnitude by the known correct magnitude, which
is the square root of the measured point spread function for
the coherent spread function, and unity for the generalized
pupil function. There is no proot that the algorithm must
converge, or that if it does, it will converge to the correct
aberration function. Clearly one possible mode of convergence,
which is the desired result, is that W becomes equal to the
actual wave aberration, and that ICSFI2 is exactly equal to the
measured h. If a different W were found such that we still had
|CSFI2 = h, then this would be an example of non-uniqueness.
This has never occurred in dur simulations, although we cannot
prove 1its impcssibility. A third possibility of convergence
is one in which neither W nor CSF ever recach the proper values,
but the estimates remain unchanged each time around the loop.
This last possibility in fact seems to be a common occurrence
although we are unable to state if the algorithm has truly con-
verged to a poor result, or is merely changing at a very slow

rate.

Previcus work performed prior to this contract extensively

tested the G.S. algorithm in the one-dimensional case with

(7
excellent resulis. No examples of false convergence were

7. A.J.Devané!;H.A.Gonsalves and R.Chidlaw,"Application of phase
retrieval techniques to adaptive imaging systems,”" J. Opt.
Soc. Am. (AV67, 1422 (}977).
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observed. The two-dimensional G.S. algorithm was testec on
this contract for a number of cases. For some initial (random)
estimates of the phase, the procedure worked well. For others,
convergence is extremely slow (perhaps on the order of 10,000
iterations) if indeed it would even be reached. A convergence
acceleration technique inspired by Pienup(e) yielded marginal
improvement in both the fast converging and slow converging
cases; but the slow converging cases remained too slow for use.
The fast converqging cases can be driven into instability by too
much of this procedure.

Table 3.1 is a list of results. The amount of aberration is
expressed in radians, in terms of: defocus - Parz, Ehird—order
spherical - P4r4, and third-order asstigmatism - Psr‘ cos & .,

The initial estimate of the phase aberration is chosen as an
array of random numbers. ‘The RMS value of L array is

adijustced depending on the Strehl ratio ¢of the PSF. A linear
tilt is added if the peak value »f the P5F is not at the array
center. The random numbers are generated by a system routine

on the PDP 11770 cxlled RAN., 1t reqiuires two random number
"seeds”® Lo determine a particular pseudo-random sequence. Three

sets of sceds were used, as listed in Table 13.2.

3

. J.R., Tienup, “"Reconstruction of an obiect from the modulus
of its Tourier transform”, J, Opt. Soc. Am., (A} 67, 1389 (1977)/
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TABLE 3.1

Results of Tests of the Two-Dimensional
Gerchberg~-Saxton Algorithm

paséihberration Random| Iterations |N, N2 |Acceleration|Results
(radians) |Number|Performed NF F
Sceds
1 Py = 3 A 20 16, 32 good
2 30 good
3 50 very good
4 B 50 bad
5 A 50 0 0.0l very good
6 50 0 0.02 |very good
7 50 \ 0.05 (bad
8 50 0 0.2 bad
9 20 10 0.05 |bad
10 40 15 0.05 |good
li B 50 8,32 {bad
Z 1‘3 =] A 16 16,32 fair
13 R 80 bad
14 e 1 w0 Lad
base[Aberration [Random] Ttera- N, N2 [ Accelera- | Results
(radians) ﬁumper tiqns tion Start Min. Finish
Sceds | Per-
formed
15 1Py =3 A 30 16,32 1 301.3 1.1
16 11 9.2
17 111 7.1
18 1Ay 4.7
19 ! \Y 2.7
20 % Vi 1.3
21 X1t .77
22 VI1I 8.8 41
213 VITI 6.5 26.9
24 X 9.0 37.2
25 X1 6.4 3l.§_d
47
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TABLE 3,1 (Continued)
ase| Mberration| Random|Itera-|N, N2] Accelera-| Results
(radians) |Number|tions tion . . .
seeds |per- N nF| Start Min. Finish
fq;med
26 X .. 3.7 8.3
27 B 50 XI1 315.0 112.0 115.98
28 3 = 22 A 40 |16,32 bad
29 P4 = 4 100 60 0.03]bad
30 [(vs = 5) 300 X 402 to 133 (de-
creasing very
slowly)
31 40 XV 402 to 178 (bad)
32 40 XI11 402 to 169 (bad)
(very
stronqg)




TABLE 3.2 RANDOM NUMBER SEEDS

= A 11427 9223

: B 2689 8957
c 4567 13879

S S RN

will fit into an N x N array of points. This is buffered out to
N2 x N2 with zeros. If N2 is twice N, the resulting PSF is
sampled at the Nyquist rate.

The column labeled "acceleration" refers to the parameters
using in attempting to accelerate convergence. If left blank,
th: original G. §. algorithm was used. In the "results"
column, a judgment of how well the first aberration estimate
compares with the actual input aberration is listed. Eventually

= a measure of the error between the original and estimated PSF's
e was added to provide a more exact measure.

Cases 1, 2, and 3 show the effect of increasing the number
of iterations of the G.S. algorithm, which is an improvement
in the estimate ~f the phase aberration. A different random
number seed yields an estimate that bears no relation to the
actual aberration, in Case 4. Other results show that this case
has not really converged but is slowly changing.

Cases 12, 13, and 14 have a smaller amount of aberration.

With the random number seed in Case 12, after only 16 iterations,
the final estimate is definitely headed for convergence at the
actual starting aberration. With different random numbers,

= even 80 iterations yields bad results. In Case 11, the effective

% sampling of the point spread function has been doubled, by

3 reducing the number of points over the aperture to 8, but this
case still failed to converge.

49
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calay

Cases 5 th-nugh 10 illustrate the first attempt at
accelerating the slgorithm. The G. S§. algorithm was modified
by the addition of a term F. ( vh - CSF ), in the box labelled
"modified” in Figure 3.1. This term causes the CSF to be
corrected not to the known CSF modulus, ¢h, but rather shifted
by an amount proportional to the difference between the
estimate, ICSF| , and the desired quantity vh, but in the
opposite direction. The parameter F denotes the strength of
this correction. This new term has not altered what may be
termed an eigenfunction of the loop; if a W which exactly
yields a point spread function h is put into the loop, it will
return unchanged. Thus any function W at which the old algorithm
would converge will still be such a function in the new algorithm.
It was hoped that this would eliminate the false¢ convergence
problems.

In Cases S through 8, F was set equal to the value specified
in the table from the beginning of the algerithm. For low F's,
this converged; for large F's, the algorithm did not. B8y
waiting for 10 iterations before applying an F of 0.05, there
is still no convergence in Case 9. But in Case 10, applying
F = 0.05 after 15 iterations, the algorithm does converge. 1t
was then decided to make the value of F, at any one iteration,
depend on the difference between‘Jh_and |csF}. An error was
defined by

ERROR = Vi~ %csr‘ll (3.1)
where the sum extends over the entire PSF planc. A series of
different F functions were tried, as defined by Table 3.3. In
all of these, the smaller the error becomes, the larger the
value of F is. In Cases 15 to 21, increasing the strength of
F resulted in faster convevrgence. In Cases 22 through 26, with
stronger F's, the error decreased to a certain point and then
began to rise. A final ecrror of less than 20 is indicative of

50
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a very good estimate of the phase aberration. Although F
function XII worked well with random number seed A, in Case 27
with random number seed B, convergence was not obtained.

Cases 28 to 32 ar¢ with a larger amount of aberration.
] : Nothing worked for these cases, including a very large number
- ? of iterations, and a very strong F function, which would no
B % doubt have produced an instability in the previous cases.
Case 4 was repeated with 1000 iterations, which is nearing the
limit of reasonable computation times on our 11/70, with no
improvement.. A final algorithm was tried in which every
time the error, as defined by Equation (3.1) began to increase,
a new random number set between 0 and 21 was added to the
current estimate of W and the algorithm was allowed to
continue. After 1000 iterations of this, good convergence

was still not obtained.

The G. 8. algorithm is quite attractive from the standpoint
of implementation into Special Purpose hardware, and the
overall simplicity of the method, but unless the problem of

false convergence 1is solved, it will not be useable.
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- 4.0 THE DEVANEY ALGORITHM

B

4.1 NOISFE-FREE, POINT DETECTOR RESULTS
i The definition of the Devaney-Gonslaves phase-retrieval al-
: gorithm is presented in the proprictary Appendix A. 1In this SR
: chapter we merely present results. The results are repeated in

the Appendix with additional discussions concerning the algorithm,

o}

mE o
RS TN}

3 E - PFlgure 4.1, 4.2, and 4.4 show, respectively, contour

plots of the original simulated phase aberration across an
& . aperture, the aberration estimated by the program, and the
J : residual aberration (the initial as corrected by the estimate).

3
3
3
=
i

The values at the contour lines are indicated by the symbols in
the table to the right of the graph. All values are in terms of
waves. The aperture coordinates X and Y are in terms of the

reduced coordinates. The aperture itself is the best circle .
which fits inside the square array; since the square array is 3
sampled on only a 9x9 mesh, the aperture is not a perfect circle

On Figure 4.4, there is little residual aberration; less than a

deviation of 0.1 waves to either side of zero, which is the

minitmum contour step value used by the contouring program,

Figures 4.3 and 4.5 show the MTF's corresponding to the initial

aberratiop and the residual aberration. The latter MTH is

essentially diffraction limited; the deviation from circularity :

near the center is due to the coarse grid on which the MTF is O
cvaluated. Only half of the MIF is plotted since it is symmetric
under the transformation (x, y)——+(-x, =-y). The coordinates x

and y on the graph represent normalized spatial frequencies; a i
value of 1 indicates a frequency of AF#, Figures 4.6 through
4.10 show contour plots of the results for another case. Yet

e 404 o

anotcher case i1s presented in Figures 4.11 through 4.15. This 3
case had larvger aberrations and took longer to complete than the

previous cascs.
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The next case used a larger and more complex aberration
and required still more computer time for proper performance.
Figqure 4.16 numerically displays the phase aberrations over tae
aperture in units of radians. As can be seen, the maximum
residual aberration at any point is less than 0.03 waves.
Fiqures 4.17 through 4.19 show contour plots for this case; the
residual phase aberration and MTF are not displayed since they

arc effectively diffraction limited.
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Another case is shown in Figares 4.20 through 4,22, Figure
4,20 is the initial point spread function. The yesults of apply-
ing the wavetfront correction as estimated by the phase retrieval
program is shown in Figure 4.231. This estimate was clearly not
an optimum estimate, Nevertheless, 1t is close enough to the
actual aberration that the corrected point spread function is
cons idaerably improved. The phase retrieval program was then run
again, with this improved point spread function as input.
Correcting the system this time yiclda diffraction limited perfor-
wance,  This is an 1llusoration of an "iterative" corroction
schane, where cach corvection results in an improvement over the
previous state of the opticg. I the aberraticns arce scverce
enoudght, 1t may well not be feasible to do all the correction at

once, but rather to employ a series of cortrection steps.
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3.2 EFFECTS OF NO1SE

We now present results showing the etffects of detector

noise. This noise is white, Gaussian, signal-independent noise
characterized by a Noise Egquivalent Flux Density
falling on the entrance pupil

ratio c¢f unity in the detectror

s

(NEFD). This is

the power from a point source
which gives a signal te noise
which receives the maximum amount of power rfrom the diffraction

limited point sprcad tunction., As such defuined, the NEFD is

dependent on the arca of the ¢ntrance pupil., Assume we are

sampling at the Nyquist rate with square detectors of area a, and

. . .=t R A " .
sj 1s the star image at the 3 hsampxe position. The RMS noise

power is

where A 15 the aperture §ize.  The total power from one detector

15

< ¢ . ..
| RN SN S t 1 W .
A

where n 18 a unit variance white Caussian noise signal.  ‘The sum

of the power in the nolge signal muest eqgual the incident power:

where }o is the power per unit areca over the entrance pupil. If

a normalized sianal 1s defined

A 5.
S, = O
B ‘Or"\

b

N
1
%
=
i

o g




8 Pl

~T7

= then
A
3 s, =1
. S
L )

and -

A
& S, =S, " 1_ A+ A " NEFD .,
: ) h] o n
:
= The signal to noise ratio at the diffraction limited PSF peak,
E A : 7
Ej bx\' ls -
ko . ;
E L
1
3 s/N v L2 a |
NEFD Tp |
:
, . A ‘o : , i
E In our simalation, £ was cqgual to 69./289., so for a 5/N ratio
; af W, we have
S

1% 2
waLts/em i

A zero magnitude star has a power Y 5.6 x 10
Assuming a narrow band filter transmitving 0.1, wavelength to get ;

. . . -16 =
nearly monochromatic radiation, the total power is 3.6 x 10

D
watts/cm”, The star maagnitude simulated 1s thus, from the

definivion of magnitude,

> ._ R o’ . .
2.4 quio PG 3

Flgures 4.0 through 4,31 present the results of a
simelation with noise. Figure 4,23 shows contours of the initial
phase aberration across the exit pupil. 7The key to the right

shows *he contour values in terme of waves., Figures 4.24 shows

contours of the MTF corresponding to this phase aberration.

Figure 4.22 is the MTF aftoer noise has been aaded. The phase
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aberration as estimated by the program is displayed in

Figure 4.26. The residual phase, equal to the initial less

the estimate, is shown in Figure 4.27. Note that it is
significantly less aberrated than the initial phase. The MTF
corresponding to the residual phase aberration is in Figure 4.28,
No noise has been added to this MTF. The point spread function
from the initial aberrvation is shown in Figqure 4.29. The same
PSF with added noise is shown in Figure 4.30. The PSF from the
corrected system is displayed in Figure 4.31. This is dcfinitely
sharper than the first PSF. WShen the same case was run without
noise, the corrected PSF was as shown in Figure 4.32. Thi: is
very nearly diffraction limited. However. it must not be
thought that the noise was really responsible for a poore) phase
estimate., Vhen the program was rerun in such a manner as ‘.o
simulate the results of a more complex version of the alg. "ithm,
a much better estimate ¢f the phase aberration was obtaine. .

The FSY from this corvection is daisplayed in Figure 4.33, The
version of the algorithm needed to insure good rvesults in this
case regquires much more computer time to execute, For a
different phase aberration or an algorithm differing in its
details, it couid well be that a noise-free simulation might
vield a voorer estimate than a simulation with noise. The
algorithm is not perfect, but the noise presents no additional
difficulty. 1t should not be difficult to find stars which

will provide at least the sigqnal to noise ratio tested here.

4.1 EFFRECTS OF NON=POINT DETECTORS

In the casc of cxtended (ngn-point) detectors the
measured point spread function PSF(x, y) is related to the ideal
point spread function PSEF (x, y) by
A

PEF (x, y) = PSF(x, y) @ Dix,y),

where D (x, y) is the dotector response which we have taken

as a square of side L:
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Dix, y!

! 0<x<L, O<y<L

0 otherwise

n

The OTF is multiplied by the transform of D

A o sinnl,fx sinwL{X
OTF (£, ty) = OTF (L, fy) ~-;§";_w;-mwﬁa .
2 x y

A detector size of 100 units, as used in the simulations, has
the first zero due to the sine function at a spatial frequency
of 0.01 cycles/unit. The optical system with which we have
simulated here has a diffraction=-limited cut-of{ freauency as
determined by the ¥4 and the wavelength of 0.05 cycles/unit
which i3 severely limited by the detector sive,

Despite these detector size limitations on the received
signal, the phase retrieval algorithm shows a remarkable ability

to correctly perform estimates, even in the presence of noise.

The results obtained in one simulation are prasented 1in
Figures 4. 34 throuch 4.38, Figure 34 shows the intensity profile
of a star object 0f the same briahtness relative to the detector
noise as presented in Section 4.4 imaged by an optical system
possessing a wave aberration function shown in Figure 4.35. The
image of the star was assumed to move across the focal plane
detector arrvay at a sufficiently small angle to the arvay axis
to allow the gonvolution of the star image with the array trans-
fer function to be sampled at the Nyquist rate, F#/2, which is
10 units in the simulation. This convelution is shown in Figure
4.36 where it 1s assumed that the detector arcay is composed of
square, 100 unit x 100 unit detector elements. The signal has
been multiplied by a factor of ten rvelative to Figqure 4.38, since
otherwise it would be difficult to see. Assuming the same NEFD
as used in Section 4.2 the noisc corrupted, detected signal which
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was input to the abervatiron estimation algorithm appears a3s

showh i Figure 4,37 {again multiplicd by ten). Finally, the

ostir
algorithm is shown in Figure 4.38. This vstimate is seen to be
very accurate as i8 evidenced by the nearly diffraction limited
point spreat function which rvesults after the adaptive opties
are corrected, in Figure 4,39, All of the three=dimensional
plots of point spread functions pregented hore arce sampled avx
approximately twice the Nyquist rare in order to clarif{y the

structure for ease in viewing: the sample spacing is 5.2 units.
The PSEF's actually used in the simulation program were sampled

at oniy the Nyguigte rate,
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5.0 THE TWO-IMAGE PLANE ALGORITHM

5.1 INTRODUCTION

The two-image plane algorithm was devised in order to
perform wavefront aberration estimation from an unknown, extend-
ed object. When imaging a delta-function-like object, the
transform of the measured signal S(x,y) is P(fx.fy). the
OTF of the imaging system. An extended object yields a transform
M(fx, fy) = O(fx' fy) . P(fx, fy), where 0 is the object
trans form, Since O is assumed unknown, P cannot be separated
out to permit use of the one-image algorithm already discussed
in Chapter 4. Appendix B presents the actual algorithm used

and providoes a more complete discussion of results than in this
Chapter.

5.2 RESULTS

All the results presenved here used twe 1mage planes
scparated by one wave of defocus, that is, a paraboloidal
aberration which is zero at the center of the aperture and cqual
to one waver at the aperture edge is added to the existing
aberration to simulate the result of moving the image plane. The
proper amount to shift the image plane 15 presumably an amount
which causes a significant change in the OTF; if the defocus is
small compared to the aberrations alrecady present, we would
expect poorer results. Variations in the amount of shift were
not investigated here. 1Ip an imaqging system using a moveable
image plane, the amount of defocus can be controlled as
appropriate for the aberrations present.

Results arc shown for only one particular phase aberration,
although it is thoroughly investigated. The initial RMS
wavefront error was .708 waves. All cases presented only

simulated the operation of the extremely lenathy "complete®
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algorithm which is virtually guaranteed of finding a good esti-
mate in the absence of noise. Table 5.1 presents results for
varying amounts of noise. Point detectors and point objects were
used. The sampling is assumed to be at the Nyquist rate. The
RMS error of the system after correction by the estimate is shown
in the column labelled "RMS",  -As -the noise increases, the error
of the phase retriecval estimates also increases.

TABLE 5.1
Results of the Two Image Plane Simulations

RME Noise Detector Object Case

Error Level Size Width

0,708 Original

0.0 NCT Point Point K

0.016 0.01 Point Point N

0.0%6 0.02 roint Point p

0,081 0.0 Point Point Q

Table 5.2 shows simulat’ = with non-point detectors (but

still point objects)., As i v one image simulation~ the
detectors are assumed t- e s res 100 units on a side, with

a » F# product of 20 unsi- -, 7. error in the phase estimate has
increased by a factos . for case U versus case N, both
having a noise leve . - ., Case 2, with }/8 as much noise as
case N still has a larger error. Figure 5.1 shows MTF's that
reveal how much information is lost by use of 100 unit detectors.
Figure 5.1(aj is the BTF frow the initial aberration in case N.
Figure 5.1(b) has had the noise from case N added. Figure 5.1{(c)
presents the transform of the detected signal, which is the MTF
from Figqure 5.1(a) multiplied by the transform of the detector
response. Note that little information is present ¢! ept at the

very lowe © frequencies. Figure 5.1(d} shows the result of adding

ol
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the noise in case 2 (which is much less than in case N). These

MTF's disoplay only one quadrant.

TABLE

5.2

Results of the Two~-Image Plane Simulations

-Noise

leyel

Detector

2128

Object
Wideh

Case

0.708

Orig

inal

; 0.087

0.01

100

Point

U

0.070

0.005

100

Point

\Y

0.0025

100

Point

e 0.045
. 0.022

0.00125

100

Point

o

9,018
0,074
0,047
- 0,105
- 0,057
0,136
0,094
- 0.242
T 1,000

0.031
0,061
0,080
0.07%0
0,077
0,143
0,198
- 0,263
< 1,000

0,037 0,338
0,054 0,037
0,037 0,070
0,083 0,052
0.020 0,027
0.086 0,074
0.024 0,081
0,170 0.102

0,02%
0,014
0,077
0.048
0,108
0,142
0.168
0,043
0,093

Figure S.1{a)

0,059 0,020
0,093 0,039
0,053 0,048
0,040 0,041
0,088 0,117
0,072 0,034
0,060 0,063
0,042 0,061
0.167 0,095

0,041
0,052
0.134
0,015
0,083
O.‘S‘
0,190
0,078
0,069

Figure 5.1 (b)

0.014
0,007
0,086
0.053
0,036
0,027
0,024
0,108

0.000
0,009
0,002
0,024
0,077
0.071
0,040
0.043
0,111

0.000
0.000
0.020
0,060
0.059
0,045
0,029
0,0%%
0,032

0.000 0,000
0,000 0,000
0.000 0,000
0,08 0,000
0,020 0,014
G.,034 0,013
0,082 0,038
0,054 0,038
0,046 0,027

Case N, Original M7TF

0.049
6.025
0,056
0.070
0.0068
0,042
0.009
0.019
0,110

0,068
0,021
0,058
0,076
0.064
0,085
0,045
0,060
0,135

0.vR4
0.055
0,089
0,055
0,032
0,031
6,008
0.066
0,094

Case N, Noisy NTF

100

0,038
0,092
0,010
0.044
0.038
0.011
0,076
0,022
0.036

0.030
0,022
0.036
0,018
0,058
0,072
0,038
0,048
0.033
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0,001
0,002
G,004
0,0GR
0,005
0,023
0,009
0,137
1,000

0,00}
0,001
0.002
0,003
0.003
0,002
0.003
0,004
0.096

Figure 5.1(c) Case

0,003
0.005
0.000
0,003
0008
0,023
0,006
0,138
1.000

0,004
0.006
0,001
0,003
0,007
0,005
0.004
0,010
0,095

Figure 5,1(Q)

0,000
0.000
0.00‘
0,000
0.001
0,000
0.001 0,003
0,004 0,004
0.080 0,015

0.000
0.000
0.001
0,003
0.002
0.004

%, Transform of Detected Signal of Point Object

6,003 0,006
0,000 0,004
0.003 0,008
0,002 0,008
0.00% 0,0CR
0.001 0,006
0.00% 0,008
0,008 0,004
0.013 0,039

0.000
0,000
0,000
06,001
0,000
0,001
0.000
0,001
0,010

0,008
0,004
0.004
0,007
0,004
0,006
0,003
0,002
0,010

Case 2,

0,000
0,000
0,00C.
0,000
0,001
0,001
0,000
0,002
0.008

0.c00
0,000
0.000
6,000
0,000
0,001
0,000
0.003
0.003

0.008
0,002
c.00?
0,006
0,003
0,004
0,004
0,006
0,010

¢.010
0,007
0.011
0,003
0,006
0,003
0.003
0,008

Transform of

0.000
N.000
0.000
0,000
0.000
0.000 0,000
0,000 0,000
0,003 0,001
0.060 0,002

0,000
0,000
0,000
0.000
0,000

0.005
0,011
0.001
0,004
0,002
0,005
0,003
0.006
0,004

0.004
0,003
0,004
0,002
0,007
0,009
0.002
0.004

Detected Signal of Point Object Plus Noise

Cases AA, BB, and CC in Table 5.3 have the same noise and

detector size as Case Z,

by a Gaussian

Y — e _eel 2
IOBJ(x.y) = eXp [ IX“ + y )/DO&J]'

but now an extended object is used.
object is taken to have an intensity in the image plane given

TABLE 5.3

Results of the Two-Image Plane Simulations

RMS Noise Detector Object Case
Level Size Width
o
0.708 o Original
0.029 0.00125 100 157.1 AN
0.041 0.00125 100 314.2 BB
0.060 0.00125 100 628.3 CcC
0.088 0.0025 100 628.3 DD
101
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DOBJ is listed in the table under "Object Width" and is in the
sam¢ units as the detector size. The detected signal is given
by the convolution of the system PSF with the detector response
and the object distribution:

. , S(x,y) = PSF(s,y) ® D(x,y) ® I . (x,y)

The transform of IOBJ 18

_ .22 2. 2
) Toma!fxe £,) = oxp [ mEDgay (Fy * fy)]

The transform of the detected signal is

S(fx. £)) = OTF(EX, fy) D(fx. fy) .

v (f,0 £)

As the object size increases (in case AA, BB, and CC in Table
5.3), the error on the phase retrieval estimate increases. The
additional attenuation ¢f the high frequencies due to the object
size is shown in Figure 5.2, which represents the detected signal
transform with and without noise, from case CC. This may be
compared to case 2 in Figure 5.1(c), in which the only difference
is the use of a non-peint object in case CC. More high frequency
information is lost in case CC. Case DD, from Table 5.3 has
twice as much noisc as case CC, and may be compared with case Y,
which has the same amount of noise but a point object. Case DD
yielded an estimate having twice the residual error of case Y.

0.000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,006 0,090 0,000
0.000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,060
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0.000 0,000 0,000 0,000 0,000 0.000 0,000 0,000
0,000 0,000 0,000 0,000 060,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,0(0 0,000 0,000 0,000 0,000 0,000
0,040 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1.000 0,028 0.000 0,000 0,000 0,000 0,000 0,000 0,000

Figure 5.2(a) Case CC,
Transform of Detected Signal of Extenced Cbject
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0,001 0,003 0,003 0,006 0,008 0,008 0,010 0,00% 0,604
0,003 0,006 0,009 0,004 0,004 0,002 0,007 0,011 0,003
0.004 0,002 0.003 0,008 0,004 0,007 0,011 0,001 0,004
0,005 4,006 0.002 0,004 0,000 0,006 0,003 0,004 0,002
0,004 0,004 0,008 0,006 0,004 0,004 0,005 0,002 0,067
0,004 0,000 0,001 0,00% 0,006 0,004 0,004 0,005 0,009
0,012 0,003 0,005 0,002 0,003 0,001 0,003 6,003 6,002
0,041 0,003 0,003 0,00% 0,C03 0,006 0.001 0,006 0,004
1,000 0,027 0,004 0,003 0,001 0,002 05009 0.004 0,008

Figure 5.2(b) Case CC,
Transform of Detected Signal of Extended Object Plus Noise

In summary, the two-image plane technique certainly works;
it does suffer from the same problem as the one-image plane
algorithm, that of very long execution times to insure the best
estimate. Finally, it may be worth noting that although we have
used the addition of defocus to the system, since it is casy to
add a known amount, any sort of other aberration could also work,
as long as it was known. These aberrations could be induced by
varying the active optics, or by the introuduction of aberrating
elements into the aptical system. Also possible are algorithms
utilizing three or more different focus positions which may be
useful in the presence of a large amount of noise, or for very

large objects.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

EIKONIX has successfully demonstrated phase retrieval of
a complex amplitude from its modulus under a wide variety of
conditions. Ouir methods are directly applicable to the
problemn of actively controlling an optical system and possess

detinite advantages over other methods such as direct inter-
ferometric measurements of the wavefront aberration which

R Sl i AN

requires integration of claborate and costly electromechanical
devices into the system. In particular, our algorithm works
well for a wide variety of wavefront aberrations, reference
objects, detector sizes and noise levels.

The only information needed to perform phase retrieval is
the detected signal of a bright "point" object sampled at the
Nyquist rate. Although the planned detector sizes would scem
to preclude Nyquist sampling, unse of image motion across the
focal planc array, with suitably spaced time samples, can

provide the necessary spatial resolutinn. Despite the fact that
much of the higher frequency information in the OTF is lost due
to the detector size, our simulations were successful with the

? planned HALO detector sizes.

Phase retrieval simulations have not been performed for
: polychromatic radiation but OTF calculations show that for a
5 bandpass filter transmitting from 0.8 to 1.2 of the central
wavelength, the polychromatic OTF differs only sliaghtly, and at

the higher frequencies, from the menochromatic OTF. This
difference would be obscured by noise and the large detector size.

Thus, we do not feel that there would be any difficulty in per-

= forming phase retrieval on broadband radiation provided some
sort of filter is provided.

Simulations have been run using white noise on the
detected signal as specified by the NEFD of the focal vlane
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detector arrays. Phase retrieval has been shown to be
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possible even when visually the signal from a point source is
apparently totally obscurred by the noise. The noise

Sk
-

i simulations also assumed a very narrow-band spectral filter
which reduced the energy from the point source significantly.

1t should not be difficult to find stars which yield a sufficient
sianal-to-noise ratio.

It may be necessary to estimate aberrations in regions of

the field of view which are totally below the horizon, and con-
= - sequently will probably lack bright point objects. 1In this
% case, it is still possible to perform phase retrieval usihg 5
bright extended (non-point) object as a target; however, two

images must be obtained at different focus positions. This
procedure has been successfully simulated.

The chief difficulty with the method lies in executing
the algorithm in an acceptable length of time. Current
simulations take about thirty minutes on a PDP 11/70., Special
purpose hardware could reduce this by at least a factor of 100
but. the computation time increases extremely rapidly as the
magnitude and the number of degrees of freedom of the wavefront
aberration increases. It will be necessary to reduce the
running Laime before realistic simulations of the HALO system
could be performed.

. Further study of the Gerchberg-Saxton algorithm is needed

< to understand its convergence problems in two dimensions. ¢t
works well in one dimension and has the potential to be much
faster than the parameter search method.

Another question to be answered is the range of magnitudes
of the aberrations such that phase retrieval can be performed in
a specified period of time. This will impact on how accurate
i the initial alignment procedure must be. This question must
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also be coordinated with a more realistic model of the
aberrations expected from HALO, both at the point of takeover

of ¢ontrol after the initial alignment, and the drifts in mirror
positions as a function of time. Also to be considered are the
effects of short term fluctuations which could cause shifts in
the aberrations between measurements done at slightly different
times, which otherwise would have been expected to be meaautihg
exactly the same aberration functions,

The problem of precisely which stars that are bright
enough to be used as pcint objects and which will be able to be
acqguired is not yet answered. Although there are many stars
which would be suitable, there is the additional constraint that
nearly simultaneous measurements be made in perhaps six different

isoplanatic regyions.

Simulation of extended (non-point) objects has been
limited to Gaussian intensity distributions. Other kinds of
objects, such as random scenes, may be more appropriate.

The problem of "deconvolution®, that is, obtaining mirror
positions from a knowledge of the wavefront error in several
different reqions of the field of view is complicated by the
two-fold ambiguity in the phase retricval estimates inherent in
any problem with a symmetrical pupil function. Although many of
the field points will not have a nearly symmetrical pupil, the
magnitude of this problem must be determined in conjunction with
the desiqgners of the HALC optical system. Simulations so far
have only treated the case of on-axis imaging of a symmetric

cptical system. Eventually off-axis cases must bhe considered, x{
and possibly non-symmetric systems. A realistic treatment will

involve more detailed knowledge of the optical system.
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